Keramikfaserentwicklung und Webverfahren als wegweisende Fertigungsschritte
Keramische Faserverbundwerkstoffe, sogenannte CMCs (Ceramic Matrix Composites) sind ein besonderes Material: Sie sind hochtemperaturbeständig und widerstehen durch die Verstärkung mit keramischen Fasern rasche und starke Temperaturänderungen unbeschadet – ganz im Gegensatz zu konventioneller Keramik. Dadurch erschließen sich für diese Werkstoffe besondere technische Einsatzgebiete.
An den Deutschen Instituten für Textil- und Faserforschung in Denkendorf werden seit Jahrzehnten keramische Fasern mit speziellen Eigenschaftsprofilen entwickelt. In jüngster Zeit wurden erhebliche Investitionen in Anlagentechnik getätigt, denn Ziel der Forschungsaktivitäten soll es sein, den Herstellungsprozess in die industrielle Fertigung zu überführen. Der Schwerpunkt liegt dabei auf der Entwicklung oxidkeramischer Fasern basierend auf Mullit und Korund.
Bestwerte in der Hochtemperaturbeständigkeit
Die maßgebende Eigenschaft dieser Fasern ist ihre hervorragende Hochtemperaturbeständigkeit. Die an den DITF entwickelten, sogenannten OXCEFI-Keramikfasern erreichen dabei bereits Werte, die diejenigen der besten kommerziell erhältlichen Fasern übertreffen. Insofern steigt auch das Interesse an deren wirtschaftlicher Umsetzung. Für den Transfer der Herstellungstechnologie in die industrielle Fertigung gibt es seitens der Industrie bereits reges Interesse.
Um die Keramikfasern weiter zu Verbundwerkstoffen zu verarbeiten, müssen sogenannte textile Preforms hergestellt werden: Aus mit keramischer Matrix getränkten Geweben lassen sich dann dreidimensionale Konturen formen, die in einem weiteren Schritt zu faserkeramischen Bauteilen gebrannt werden.
Die Herstellung der Gewebe für die Preforms ist an den DITF nun erstmals in hoher und reproduzierbarer Fertigungsqualität gelungen. Was sich vielleicht unspektakulär anhört, ist in Bezug auf keramische Fasern alles andere als trivial. Die Fasern überzeugen zwar in Faserlängsrichtung durch hohe Festigkeitswerte, sind jedoch bei mechanischen Belastungen quer zur Faserachse sehr bruchanfällig. Übliche Webverfahren sind viel zu belastend für das Garn. Es resultieren Filamentbrüche, die die Gewebeherstellung behindern oder im schlimmsten Fall ganz unmöglich machen.