Faserverstärkte Kunststoffe (FVK) überzeugen durch hervorragende Eigenschaften wie hohe Festigkeiten, geringes Gewicht, Steifigkeit und Schwingungsdämpfung. So verwundert es nicht, dass der Markt für diese Werkstoffe kontinuierlich wächst. Prognosen gehen von bis zu zweistelligen jährlichen Wachstumsraten aus.
Den besonderen Eigenschaften der FVK stehen bisher jedoch aufgrund der aufwändigen Herstellungsverfahren relativ hohe Produktionskosten gegenüber. Zur weitreichenden Etablierung von FVK in der industriellen Serienproduktion sind niedrige Rohstoffkosten ebenso wie kostengünstige Produktionstechniken erforderlich. Diese müssen so ausgelegt sein, dass sie die Herstellung von Bauteilen hoher und vor allem konstanter Güte ermöglichen – Anforderungen, die besonders bei großen Bauteilen wie Rotorblättern von Windenergieanlagen nicht immer leicht zu erfüllen sind.
Etablierte Systeme mit vielen Nachteilen
Bei der Verarbeitung etablierter duroplastischer 2-Komponenten-Epoxidsysteme stehen diesen Zielsetzungen einige Hürden im Weg. So werden in Epoxiden i.d.R. Reaktions-beschleuniger beigesetzt, die eine schnellere Härtung und damit eine kostengünstige Produktion bewirken. Allerdings sind die Harze in dieser Form schlecht lagerungs- und transportfähig: Durch die Reaktionsbeschleuniger verhalten sie sich sehr reaktiv und müssen daher bis zur Verarbeitung mit hohem apparativen Aufwand definiert gekühlt werden.
Bei den etablierten 2K-Epoxidsystemen mischt man Harz und Härter direkt vor der Verarbeitung. Während der Verarbeitung findet die Vernetzung innerhalb einer kurzen Zeitspanne statt. Es besteht dabei die Gefahr der Vorvernetzung, die schon beginnt, bevor die textilen Lagen vollständig vom Harz durchdrungen sind. Ist dieser Prozess nicht perfekt abgestimmt, werden Werkstoffe mit nicht infiltrierten Bereichen erhalten, die minderer Qualität sind. Auch können Lufteinschlüsse bei der Vermischung von Harz und Härter entstehen, die sich nur durch aufwändige Entlüftungstechniken des Epoxidsystems reduzieren lassen.